International Journal of Clinical and Experimental Hypnosis

Reality Monitoring in Hypnosis: A Real-Simulating Analysis

Richard A. Bryant & David Mallard

University of New South Wales, Sydney, Australia

Published online: 21 Aug 2006.

To cite this article: Richard A. Bryant & David Mallard (2005) Reality Monitoring in Hypnosis: A Real-Simulating Analysis, International Journal of Clinical and Experimental Hypnosis, 53:1, 13-25, DOI: 10.1080/00207140490914216

To link to this article: http://dx.doi.org/10.1080/00207140490914216

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly
REALITY MONITORING IN HYPNOSIS:
A Real-Simulating Analysis

RICHARD A. BRYANT AND DAVID MALLARD1,2

University of New South Wales, Sydney, Australia

Abstract: The extent to which hypnotic suggestions are perceived as real is central to understanding hypnotic response. This study indexed the reality attributed to hypnotic suggestion through subtle projection of a visual image during simultaneous suggestion for a visual hallucination that resembled the projected image. Twenty real hypnotized and 20 simulating nonhypnotized participants were administered a hypnotic induction and given a suggestion to hallucinate a shape, and then the projected image was introduced. Following the hypnosis session, an Experiential Analysis Technique was employed to index experiential responses. Real, but not simulating, participants made comparable reality ratings when the projected image was absent and present. Reals, but not simulators, also reported more effort in maintaining belief in the suggestion when the projection was absent. These findings suggest that the reality attributed to a hypnotic suggestion cannot be attributed to demand characteristics.

The extent to which hypnotized individuals attribute reality to a hypnotic suggestion is central to the understanding of hypnosis. One perspective of hypnosis suggests that hypnotic response is characterized by the belief in the external reality of the suggested experience (Sheehan & McConkey, 1982; Sutcliffe, 1961). In contrast, some socio-cognitive theorists propose that the role-playing nature of the hypnotic response results in participants being aware that they are acting as if their experiences are real (Wagstaff, 1996). The factors that contribute to reality monitoring in hypnosis appear complex. Whereas some hypnotic participants can experience a vivid image and not attribute reality to it, others can believe in the external reality of a suggested experience without vivid imagery (Bryant & McConkey, 1989a, 1989b, 1990b; Sheehan & McConkey, 1982).

The debate over the perceived distinction between reality and imagery has also occurred outside the domain of hypnosis. Although some evidence from self-reports has suggested that images can be confused with perceptual images (Crowder, 1989; Segal, 1971; Segal & Fusella,
other evidence suggests that this confusion is negligible (Farah & Smith, 1983). There is also competing evidence concerning the extent to which hypnotically suggested experiences are confused with external reality. In recent years, there has been increasing evidence that neurophysiological responses during hypnosis or imagery can be comparable to responses to actual stimuli. For example, one study found that during imagery, and most strongly during hypnosis, the brain regions that were activated when color (or lack of color) was suggested to participants were comparable to regions activated when these actual stimuli were presented with positron emission tomography (PET; Kosslyn, Thompson, Costantini-Ferrando, Alpert, & Spiegel, 2000). Overall, there is convergent evidence of shared (though not necessarily identical) neural networks involved in visual imagery and visual perception (for a review, see Kosslyn & Thompson, 2000).

One of the earliest studies on this topic was conducted by Perky (1910) in Titchener’s laboratory. In this experiment, participants were asked to imagine different items centered on a spot that they were looking at and, unbeknownst to participants, faint replicas of the suggested images were projected around the spot. Perky reported that although many participants described the projected images, they claimed that these images were generated by their imaginations. This confusion between imagery and projection may include optical, perceptual, attentional, or response-bias mechanisms (see Craver-Lemley & Reeves, 1992; Segal, 1971). Hypnosis researchers have adopted this paradigm to index reality monitoring in hypnosis. Orne and McConkey (1981) proposed that requiring participants to describe images of suggested events with subtly presented perceptual images that are similar to the suggested image provides a means of obtaining an objective measure of subjective experience. For example, Orne and McConkey suggested that a dot on a wall would change color, and this dot was in fact a liquid crystal that did change color when it was unobtrusively heated by an element embedded in the wall. Although previous research has manipulated participants’ perceptions of their capacity to respond to hypnotic suggestion by subtly presenting images that mimic the suggested effects (Benham, Bowers, Nash, & Muenchen, 1998; Kirsch, Wickless, & Moffitt, 1999; Wickless & Kirsch, 1989), these studies have not specifically indexed reality monitoring during hypnosis. In a pilot study, we compared responses during a hypnotic suggestion for a visual hallucination when a projected image that mimicked the suggested image was absent and was subtly presented (Bryant & Mallard, 2004). This study found that high hypnotizable participants who had the projected image introduced at the end of a suggestion for a visual hallucination provided comparable belief ratings when the image was present and absent. In contrast, highs who had the projected image presented first reported less belief when the image was absent than
when it was present. In a subsequent study, we found that high hypnotizable participants in a hypnosis, but not wake, condition reported comparable belief ratings in the suggested experience when the projected image was present and absent (Bryant & Mallard, 2003). These findings suggest that hypnosis and high levels of hypnotizability can interact to facilitate confusion of reality and suggested experience.

Although Orne and McConkey (1981) suggested that this approach minimized the possibility of overt demand characteristics, previous studies using this paradigm have not directly indexed the role of demand characteristics. The importance of indexing demand characteristics is underscored by findings that a hypnotic suggestion to “not see” an object leads to different reported experiences than a suggestion to “imagine not seeing” an object (Barber, 1969; Barber & Calverley, 1964). The explicit expectation concerning the external reality of the suggested experience may result in perceived experimental demands to report the reality of the suggested event. This study employed Orne’s (1979) real-simulating paradigm that compares the performances of real, hypnotized individuals with those of simulating, unhypnotized individuals who behave as real, hypnotized individuals should. The participants are initially instructed by one experimenter, and the hypnotic testing is conducted by a second experimenter who is unaware of the real or simulating identity of the participants. This paradigm holds that if real and simulating participants perform similarly, then an explanation of real participants’ responses in terms of demand characteristics cannot be ruled out. Real and simulating participants were administered a suggestion for a positive visual hallucination following a hypnotic induction. All participants were administered the suggestion prior to a projected image being presented. Participants provided verbal ratings of reality and vividness when the projected image was absent and present. After the hypnosis session, the participants participated in an inquiry session that employed the Experiential Analysis Technique (EAT; Sheehan & McConkey, 1982). This inquiry is conducted to obtain more detailed qualitative information about the subjective experiences of participants’ reality monitoring. Participants viewed a videotape of their hypnosis session and responded to questions from the experimenter concerning core cognitive and subjective experiences during hypnosis. Videotaped records of the inquiry sessions were rated to provide data on the belief that participants had in the suggested hallucination at both projection conditions and also in the perceived source of the image. It was hypothesized that reals would make comparable reality ratings across projection conditions. Responses of simulators would indicate whether reals’ EAT responses may simply reflect demand characteristics associated with the EAT.
METHOD

Participants
Participants were undergraduate students at the University of New South Wales, who participated in this experiment in return for research credit. The sample comprised 14 (4 male and 10 female) high hypnotizable, real participants of mean age 20.30 years (SD = 6.81) and 16 (4 male and 12 female) low hypnotizable, simulating participants of mean age 20.05 years (SD = 3.14). Participants were preselected on the basis of their extreme scores on a modified 10-item version (omitting arm immobilization and arm rigidity) of the Harvard Group Scale of Hypnotic Susceptibility, Form A (HGSHS:A; Shor & Orne, 1962), and they were classified as reals or simulators on the basis of their performance on a 10-item modified version (omitting arm rigidity and hallucinated voice) of the Stanford Hypnotic Susceptibility Scale, Form C (SHSS:C; Weitzenhoffer & Hilgard, 1962). Reals scored in the range of 7 to 10 (M = 8.00, SD = 0.86) on the HGSHS:A and 8 to 10 (M = 9.20, SD = 0.77) on the SHSS:C. Reals who did not pass the positive visual hallucination item in the SHSS:C were not included in the study. Simulators scored in the range of 0 to 3 on the HGSHS:A (M = 2.15, SD = 0.99) and 0 to 3 on the SHSS:C (M = 1.85, SD = 1.09).

Apparatus
A laptop computer running Microsoft PowerPoint and connected to an NEC MultiSync MT820G LCD projector was used to produce the visual stimuli. The percept consisted of a blue circle that was projected on a cream-colored wall in front of participants. The transition from absent to present was produced by presenting 40 slides at 1-second intervals, with each slide incrementally increasing the luminance of the circle at a linear rate. The PowerPoint settings for when the stimulus was fully present were hue = 170, saturation = 255, and luminance = 30. These settings were determined on the basis of achieving an image that did not have a discernible outline or noticeable change between slide presentations. Importantly, the projector and computer were concealed from participants’ view to reduce the likelihood of participants perceiving that the image may have been projected.

Procedure
All participants were tested individually. During the preexperimental instruction phase, Experimenter 1 (E1) obtained written informed consent and instructed participants according to the procedures of the real-simulating paradigm. Reals were told they would be taken to Experimenter 2 (E2) who would conduct a hypnosis session. Simulators were told that their task was to fool him into believing that they were excellent hypnotic participants, that E2 did not know which participants...
were faking, and that he would stop the session if he discovered they were faking. They were told their task was a difficult one, that intelligent individuals could do it successfully, and that they were not to reveal they were faking until they returned from their hypnosis session. Finally, all participants were told they would be given the opportunity to discuss their experiences with E1 during the postexperimental inquiry. Following this, E1 introduced participants to E2, who was unaware of their real or simulating identity.

E2 informed participants that the study was investigating “people’s ways of experiencing imagery and suggestions.” The hypnotist presented participants with a printed diagram of a blue circle that was identical to the one that was subsequently projected. The experimenter told them that they would be asked to recall this shape later in the session. The hypnotist then administered a hypnotic induction procedure and tested participants on a number of hypnotic suggestions that were unrelated to the present study; these suggestions were for vertical hand separation, finger lock, verbal inhibition, and negative visual hallucination. The hypnotist then administered a suggestion that they would see a blue circle on the wall. The suggestion was composed of an 80-second suggestion phase. The initial suggestion, which occurred over a 30-second period, was as follows:

In a moment, I am going to ask you to open your eyes and when I do you will start to see a blue circle on the wall in front of you, like the one I showed you earlier. The circle that you will see on the wall may be like the one I showed you or it may be different. It doesn’t really matter. But in a moment you will start to see a blue circle in the center of the wall that is sort of similar to the one you saw before. Now open your eyes and look at the wall . . . Now as you look at the wall, you will start to see a blue circle. The more you look at the wall, the blue circle is becoming clearer and clearer . . . stronger and stronger. The more you look at the wall the more you can see the blue circle is. It is getting stronger and stronger . . . clearer and clearer. . . . I am not sure how it looks to you but you can now see a blue circle quite clearly on the wall. . . . Allow yourself to see the circle.

Participants who at this stage reported not being able to see the circle were administered the following supplementary suggestion, which occurred over another 30 seconds:

It sometimes takes some time. I want you to keep looking at the wall and as you do, I want you to focus on the blue circle that is starting to appear. Just keep looking at the wall, and as you do you can notice that the circle will appear. The more you look, the clearer and stronger it appears. You can see it right in front of you. As you remain calm and relaxed, the blue circle is clear now.
For Projection Condition 1, participants were asked to rate their belief that there was a circle on the wall (1 = very unsure, 10 = very sure) and the vividness of the circle (1 = not at all clear, 10 = extremely clear). Separate ratings for vividness were obtained to index the clarity of the image and the extent to which participants believed in the external reality of the image. The projected image was then introduced. In Projection Condition 2, participants were then asked to describe what they were seeing on the wall and were again asked to provide reality and vividness ratings. The hypnotist then asked participants to close their eyes, canceled the suggestion, terminated the presentation, and administered a deinduction procedure.

E2 then informed participants that he would show them a videotape of their hypnosis session and that this would help them to recall their experiences of hypnosis. He told participants that he would stop the videotape playback at a number of places and ask about their experiences at those points. He also informed participants that the EAT session would be videotaped. The inquirer asked participants to comment on their responses to a number of items in the hypnosis session, including responses to the positive visual hallucination suggestion. The experimenter probed into the experiences under investigation (see below) by enquiring about these domains in a nondirective manner (e.g., “Tell me more what happened when I asked you to see the circle?”). The experimenter and an independent rater independently evaluated the videotape records of EAT sessions. Participants’ comments about the responses to the hallucination item were rated on: (a) their belief in the genuineness of the visual hallucination (1 = not at all real, 10 = extremely real), (b) vividness of the hallucination (1 = not at all vivid, 10 = extremely vivid), (c) the effort required to see the hallucination (1 = no effort, 10 = extreme effort), and (d) the perceived source of their experience (projected, not projected).

Finally, E2 guessed the real-simulating status of participants. Participants then returned to E1 for a brief postexperimental inquiry. During this time, E1 inquired into participants’ perceptions of the overall procedures, asked simulators if they felt they were hypnotized at any time, debriefed participants and concluded the experiment.

RESULTS

Preliminary Analyses

The hypnotist rated the real-simulating status of participants at the conclusion of the experimental session. The hypnotist correctly identified 69% of reals and 70% of simulators.

Self-Report Ratings

Table 1 presents the mean reality and vividness ratings. A 2 (experimental group) × 2 (projection condition) mixed model analysis of variance
(ANOVA) of reality ratings indicated significant main effects for experimental group, $F(1, 28) = 4.84, p < .05$, projection condition, $F(1, 28) = 10.78, p < .01$, and a significant interaction effect for Experimental Group $\times$ Projection Condition, $F(1, 28) = 4.21, p < .05$. Post hoc comparisons indicated that simulators reported higher reality ratings than reals, and more reality was reported when the projection was present than absent. In terms of the interaction, whereas reals reported comparable reality ratings across projection conditions, simulators reported higher reality ratings when the projection was present than absent ($p < .01$).

A $2 \times 2$ mixed-model ANOVA of vividness ratings indicated a significant main effect for projection condition, $F(1, 28) = 7.42, p < .01$. Participants reported higher vividness ratings when the projection was present than when it was absent.

### Experiential Data

Table 2 presents the mean reality, vividness, and effort ratings obtained from the EAT. A $2 \times 2$ mixed-model ANOVA of reality ratings indicated significant main effects for projection condition, $F(1, 28) = 9.27, p < .01$, and a significant interaction effect for Experimental Group $\times$ Projection Condition, $F(1, 28) = 4.58, p < .05$. Post hoc comparisons indicated that simulators had higher reality ratings than reals, and whereas reals reported comparable reality ratings across projection conditions, simulators reported higher reality ratings when the projection was present than when it was absent ($p < .05$).

A $2 \times 2$ repeated-measures ANOVA of vividness ratings indicated a significant main effect for projection condition, $F(1, 28) = 7.32, p < .01$. Simulators had higher vividness ratings than reals. A $2 \times 2$ repeated-measures ANOVA of effort ratings indicated significant main effects for experimental group, $F(1, 28) = 8.49, p < .01$, projection condition, $F(1, 28) = 5.52, p < .05$, and a significant

### Table 1

**Self-Report Ratings**

<table>
<thead>
<tr>
<th></th>
<th>Image Absent</th>
<th>Image Present</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vividness</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real</td>
<td>6.08 (2.25)</td>
<td>6.85 (2.61)</td>
</tr>
<tr>
<td>Simulating</td>
<td>5.59 (3.28)</td>
<td>8.29 (1.90)</td>
</tr>
<tr>
<td><strong>Reality</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real</td>
<td>6.31 (2.46)</td>
<td>7.00 (2.71)</td>
</tr>
<tr>
<td>Simulating</td>
<td>6.65 (3.12)</td>
<td>9.65 (0.49)</td>
</tr>
</tbody>
</table>

*Note: Standard deviations appear in parentheses.*
interaction effect for Experimental Group × Projection Condition, $F(1, 28) = 4.47, p < .05$. Simulators reported less effort than reals, and more effort was reported when the projection was absent than when it was present. Whereas simulators reported comparable effort across projection conditions, reals reported less effort when the projection was present than when it was absent ($p < .05$). One real (8%) and 4 simulating (24%) participants reported during the EAT that they suspected that the image may have been projected.

**Postexperimental Inquiry**

Postexperimentally, no simulators reported that they felt that they had been hypnotized. No reals and 7 simulators reported postexperimentally that they suspected that the image had been projected.

**DISCUSSION**

The finding that hypnotized participants reported comparable reality ratings across projected and suggested images supports the proposal that hypnotically suggested experiences have a degree of perceived reality (Sutcliffe, 1961). This finding accords with recent applications of this paradigm that indicated that hypnotized high hypnotizable participants can confuse suggested and projected images (Bryant & Mallard, 2003, 2004). These findings are also consistent with evidence of similar neurophysiological activity during suggested color hallucination and actual color stimuli (Kosslyn et al., 2000).

The major goal of this study was to index the extent to which demand characteristics may influence hypnotic participants’ responses on this paradigm. Whereas reals and simulators reported comparable reality ratings when the image was not projected, real hypnotized
participants reported lower reality ratings than simulators when the projection was absent. This pattern was reflected in both the experimental ratings and participants’ comments in the EAT. According to the rationale of the real-simulating paradigm (Orne, 1959, 1979), the finding that reals and simulators responded comparably when the projection was absent suggests that an explanation in terms of demand characteristics cannot be ruled out. This result suggests that there were sufficient experimental cues available during the suggestion when the projection was absent for the simulators to respond the same way as reals. This finding accords with the view that hypnotic hallucinations may be a function of compliant responding to experimental demands (Wagstaff, 1996). In contrast, simulators increased their reality rating when the projection was present relative to real, hypnotized participants. This finding suggests that reals may have displayed a deficit in reality monitoring because they did not monitor the projected stimulus in the way that simulators believed they would. This possibility accords with notions that hypnosis is characterized by a reduced reality orienting in which the hypnotized individual focuses more on their internal construction of experience that is guided by the hypnotic suggestion rather than to external events (Shor, 1979). Although more simulators (24%) than reals (8%) reported during the EAT that the image may have been projected, this difference was not statistically significant. Nonetheless, this pattern underscores the possibility that simulators may have detected the image more than reals or that a proportion of simulators perceived that the experimental demand was to report that the image was projected.

The EAT responses indicated that greater effort was exerted by reals when the projection was absent than when it was present. The finding that simulators did not display this pattern indicates that the reports of increased effort cannot be attributed to demand characteristics. It appears that although the reals were able to maintain comparable reality ratings when the projection was present and absent, this achievement was not effortless. This inference accords with much evidence that hypnotized participants actively employ strategies to satisfy the requirements of the hypnotic setting and that achieving difficult hypnotic tasks requires considerable cognitive load (Bryant & McConkey, 1990a, 1990b; Sheehan & McConkey, 1982).

Inferences from this study are limited by a number of factors. First, we employed a fixed order of presenting the projection after the hypnotic suggestion for a visual hallucination. We have previously reported that presenting a projected image and then removing it during the suggested hallucination results in little confusion between suggestion and projection (Bryant & Mallard, 2004). It is possible that the order in which the projection is presented may alter demand characteristics, and this was not indexed in the current study. Future investigation
could usefully address the different mechanisms involved in the order of stimulus presentation in reality monitoring in hypnosis. Second, inherent in the real-simulating design is the comparison of high and low hypnotizable participants. It is possible that differential responding on this task may be associated, in part, with different levels of hypnotizability. There is evidence that elevated hypnotizability is associated with cognitive abilities that are associated with visual perception, including performance on the Necker cube and autokinetic movement tasks (Crawford, Brown, & Moon, 1993) and visual-search responses (Farthing, Brown, & Venturino, 1982; Wallace & Patterson, 1984). Evidence that high hypnotizable participants may have enhanced abilities in visual attending is relevant because of findings that focused attention enhances the Perky effect (Craver-Lemley & Reeves, 1992). Third, the Perky effect is influenced by the stimulus characteristics, such as induced depth perception (Craver-Lemley, Arterberry, & Reeves, 1997) and stimulus resolution (Kosslyn, Sukel, & Bly, 1999). Accordingly, the current findings should be replicated with a range of stimuli that have been studied in nonhypnotic investigations of the Perky effect (see Kosslyn & Thompson, 2000). We also recognize that the experimenter correctly identified the status of approximately two-thirds of participants. This rate of correct classification may reflect the timing of the rating, which occurred after the experimental and EAT sessions and which may have led the experimenter to more accurately identify the identity of some participants.

The current study suggests that the observed confusion between reality and suggestion during hypnosis cannot be explained solely in terms of social compliance. This finding supports the perspective that hypnotized participants do attribute a degree of reality to their suggested experiences (Sheehan & McConkey, 1982). Future research should more closely index the social, cognitive, and neurophysiological variables associated with the confusion of reality and suggestion. Delineation of these variables will enhance our understanding of one of the core factors underpinning successful hypnotic response.

REFERENCES


Reality Monitoring in Hypnosis: eine real-simulating-Analyse

Richard A. Bryant and David Mallard

Zusammenfassung: Das Ausmaß zu dem hypnotische Suggestionen als echt wahrgenommen werden ist zentral für das Verständnis hypnotischer Reaktionen. Diese Studie überprüfte den Realitätscharakter, der hypnotischen Suggestionen beigemessen wird, durch eine feine Projektion eines Bildes wobei gleichzeitig die Suggestion zu einer visuellen Halluzination einer solchen Gestalt gegeben wurde. 20 tatsächlich hypnotisierte und 20 Hypnose nur vortäuschende Teilnehmer erhielten dieselbe hypnotische Induktion gefolgt von der Suggestion, eine Form zu halluzinieren, woraufhin die projizierte Form angeschaltet wurde. Nach der Hypnosesitzung wurden unter Verwendung einer Technik zur Feststellung gemachter Erfahrungen die erlebten Reaktionen erhoben. Die tatsächlich hypnotisierten, nicht aber die Hypnose nur vortäuschenden Teilnehmer, gaben für Durchgänge bei denen die Projektion angeschaltet war ähnliche Bewertungen ab wie für die Durchgänge ohne Projektion. Die tatsächlich hypnotisierten, nicht aber die Hypnose nur vortäuschenden Teilnehmer, berichteten eine stärkere Anstrengung beim Versuch, den Glauben an die Suggestion aufrechtzuerhalten, wenn die Projektion ausgeschaltet war. Diese Befunde legen nahe, dass der Realitätscharakter, der hypnotischen Suggestionen zugeschrieben wird, nicht auf situationale Anforderungen zurückgeht.

RALF SCHMAELZLE
University of Konstanz, Konstanz, Germany

Suive de la notion de réalité sous hypnose : une analyse réelle-simulée

Richard A. Bryant et David Mallard

Résumé : La mesure de perception des suggestions hypnotiques comme étant réelles est au cœur de la compréhension de la réponse hypnotique. Cette étude a évaluée la notion de réalité attribuée à la suggestion hypnotique en projetant de manière subtile une image visuelle toute en suggérant simultanément la visualisation d’une image qui ressemblait à celle projetée. 20 participants réellement hypnotisés et 20 autres qui simulaien l’hypnose ont reçu une induction hypnotique et la suggestion de visualiser une forme,
puis ils pouvaient voir l'image projetée. À la suite de la séance hypnotique, une technique d’analyse expérientielle fut employée pour cataloguer les réponses expérientielles. Les participants qui ne simulèrent pas avaient des scores comparables que l’image soit projetée ou non. Ces mêmes participants ont aussi fait part de la nécessité de plus d’effort à maintenir la croyance en la suggestion quand il n’y avait pas de projection. Ces résultats suggèrent que la réalité attribuée à une suggestion hypnotique ne peut pas être attribuée caractères spécifiques d’une attente.

VICTOR SIMON  
Psychosomatic Medicine & Clinical Hypnosis  
Institute, Lille, France

Monitoreo de la realidad en hipnosis: Un análisis con reales y simuladores

Richard A. Bryant y David Mallard

Resumen: El grado en el cual las sugestiones hipnóticas se perciben como reales es central a nuestro entendimiento de la respuesta hipnótica. Este estudio midió la realidad atribuida a la sugestión hipnótica mediante la proyección sutil de una imagen visual durante la sugestión simultánea de una alucinación visual que asemejaba la imagen proyectada. Se administró una inducción hipnótica a 20 participantes verdaderamente hipnotizados y 20 simuladores no hipnotizados, y se les dio una sugestión para que alucinaran una forma, después de lo cual se proyectó la imagen. Después de la sesión de hipnosis, empleamos la Técnica de Análisis Experiencial para evaluar las respuestas experienciales. Los participantes verdaderos, no los simuladores, hicieron evaluaciones comparables con y sin la imagen proyectada, y también mencionaron tener que esforzarse más para mantener la creencia en la sugestión cuando no había proyección. Estos hallazgos sugieren que la realidad atribuida a una sugestión hipnótica no pueden atribuirse a las características de demanda del experimento.

ETZEL CARDEÑA  
University of Texas, Pan American,  
Edinburg, Texas, USA